z-logo
open-access-imgOpen Access
Spherical and rod-like dialdehyde cellulose nanocrystals by sodium periodate oxidation: Optimization with double response surface model and templates for silver nanoparticles
Author(s) -
F-F. Lu,
Hou–Yong Yu,
Yuwei Zhou,
J-M. Yao
Publication year - 2016
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2016.90
Subject(s) - sodium periodate , materials science , template , nanocrystal , periodate , cellulose , nanoparticle , chemical engineering , sodium , polymer chemistry , organic chemistry , nanotechnology , chemistry , metallurgy , engineering
A novel double response surface model is used first time to optimize a regioselective process to prepare spherical dialdehyde cellulose nanocrystals (SDACN) and rod-like dialdehyde cellulose nanocrystals (RDACN) via one-step sodium periodate (NaIO4) oxidation. The influence of four preparation factors (solid-liquid ratio, NaIO4 concentration, reaction time and temperature) on the yields and aldehyde contents of the final products were evaluated. For comparison, rod-like cellulose nanocrystals (CN-M and CN-S) were prepared by hydrochloric/formic acid hydrolysis and sulfuric acid hydrolysis, respectively. The RDACN shows high crystallinity of 82%, while SDACN presents low crystallinity due to the high degree of oxidation. Thus, SDACN has poorer thermal stability than RDACN and CN-M, but higher than CN-S. Compared to CN-M, SDACN with higher aldehyde contents as templates is beneficial to deposit more Ag nanoparticles with diameters of 30±4 nm and the resultant nanohybrids exhibit good antibacterial activities against both Gram-negative E. coli and Gram-positive S. aureus

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom