z-logo
open-access-imgOpen Access
Characterization and kinetic study of Diels-Alder reaction: Detailed study on N-phenylmaleimide and furan based benzoxazine with potential self-healing application
Author(s) -
Žiga Štirn,
Aleš Ručigaj,
Matjaž Krajnc
Publication year - 2016
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2016.51
Subject(s) - furan , characterization (materials science) , diels–alder reaction , materials science , kinetic energy , organic chemistry , nanotechnology , chemistry , catalysis , physics , quantum mechanics
The Diels-Alder reaction between N-phenylmaleimide and benzoxazine bearing furan group was investigated for the purpose of successful appliance of self-healing in benzoxazine polymer networks. The reaction as a function of temperature/time was performed in molten state and in a solution, where also the kinetic study was performed. The Diels-Alder reaction leads to a mixture of two diastereomers: endo presented at lower cyclo-reversion temperature and exo at higher. Therefore, the conversion rates and exo/endo ratio were studied in detail for both systems. For instance, in molten state the Diels-Alder reaction was triggered by the temperature of the melting point at 60 °C with exo/endo ratio preferable to the endo adduct. The study of the kinetics in a solution revealed that the Diels-Alder reaction followed typical bimolecular reversible second-order reaction. The activation energies were close to the previous literature data; 48.4 and 51.9 kJ·mol–1 for Diels-Alder reaction, and 91.0 and 102.3 kJ·mol–1 for retro-Diels-Alder reaction, in acetonitrile and chloroform, respectively. The reaction equilibrium in a solution is much more affected by the retro-Diels-Alder reaction than in a molten state. This study shows detailed investigation of DA reaction and provides beneficial knowledge for further use in self-healing polymer networks

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom