Low-cost replication of self-organized sub-micron structures into polymer films
Author(s) -
H. Stenberg,
Pauline Stenberg,
Laura Takkunen,
Markku Kuittinen,
Mika Suvanto,
Tuula T. Pakkanen
Publication year - 2014
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2015.11
Subject(s) - replication (statistics) , materials science , polymer , nanotechnology , polymer science , composite material , mathematics , statistics
In this paper, the results of exploiting self-organized sub-micron polystyrene (PS) wrinkle patterns possessing random orientation, in preparation of a nickel stamp for hot embossing purposes, are presented. Self-organized patterns were prepared employing a method in which a stiff cross-linked capping layer on the topmost part of the soft polystyrene layer was created by using reactive ion etching (RIE) device with mild conditions and argon as a process gas, and the wrinkle formation was initiated thermally. Different surface patternings were obtained using silicon and stainless steel (SST) wafers as substrates. Prepared Ni-stamps were employed in hot embossing of polycarbonate (PC) and cyclo-olefin polymer (COP) films, using a nano-imprinting process. The replication quality of the self-organized wrinkle structures in PC and COP films was monitored by comparing the shape and dimensions of the original and final surface structures. The hot embossed sub-micron scale features, originally formed on stainless steel substrate, were found to have influence on the optical properties of the PC and COP films by lowering their reflectances
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom