Structural characteristics and enhanced mechanical and thermal properties of full biodegradable tea polyphenol/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite films
Author(s) -
Hengxue Xiang,
Shaohua Chen,
Yanhua Cheng,
Zhe Zhou,
Meifang Zhu
Publication year - 2013
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2013.75
Subject(s) - materials science , composite number , polyphenol , composite material , thermal , poly 3 hydroxybutyrate , chemical engineering , organic chemistry , chemistry , physics , engineering , antioxidant , meteorology
Full biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) composite films were prepared with 5~40 wt% green tea polyphenol (TP) as toughener. The effects of mixing TP on mechanical properties, thermal properties and hydrophilic-hydrophobic properties of composite films were investigated. Tension test results show that the incorporation of TP in the PHBV matrix can enhance the toughness of the composite films. Differential scanning calorimetric (DSC) studies show that there is a single glass transition temperature and the lower melting point temperature. Fourier transform infrared (FT-IR) results confirm that the intermolecular hydrogen bonding interactions in composite films. Contact angle measurements show that the hydrophilicity of TP/PHBV composite films can be controlled through adjusting the composition of TP
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom