z-logo
open-access-imgOpen Access
Multiwalled carbon nanotubes incorporated into a miscible blend of poly(phenylenether)/polystyrene – Processing and characterization
Author(s) -
S. Sathyanarayana,
Marcin Wegrzyn,
Ganiu B. Olowojoba,
Adolfo Benedito,
Enrique Giménez,
Christopher F. Huebner,
Frank Henning
Publication year - 2013
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2013.59
Subject(s) - materials science , polystyrene , characterization (materials science) , miscibility , chemical engineering , carbon nanotube , polymer science , composite material , nanotechnology , polymer , engineering
4 wt% multiwalled carbon nanotubes (MWCNTs) were incorporated into a miscible blend of polyphenylenether/polystyrene (PPE/PS) on a twin-screw extruder at a screw speed of 600 rpm. The masterbatch obtained was diluted at 400 and 600 rpm to obtain lower MWCNT loadings in PPE/PS. Electron microscopy & optical microscopy images show very good MWCNT dispersion even at high filler loadings of 4 wt%, but slightly larger agglomerate size fractions are observable at higher screw speeds. While MWCNT addition enhanced the thermal stability of PPE/PS, a small change in glass transition was observed on the composites at different filler concentrations compared to PPE/PS. The specific heat capacity at glass transition decreases considerably until 2 wt% MWCNT and levels down thereafter for both processing conditions pointing to enhanced filler-matrix interaction at lower loadings. Storage modulus of the nanocomposites was enhanced significantly on MWCNT incorporation with reinforcing effect dropping considerably as a function of temperature, especially at lower filler contents. The modulus and the tensile strength of PPE/PS were only marginally enhanced in spite of excellent MWCNT dispersion in the matrix. Electrical percolation occurs at 0.4 wt% MWCNT content, and the electrical conductivity of 0.5 wt% MWCNT reinforced PPE/PS was close to 12 orders in magnitude higher compared to PPE/PS

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom