
Influence of chemical treatment on the tensile properties of kenaf fiber reinforced thermoplastic polyurethane composite
Author(s) -
Y.A. El-Shekeil,
S. M. Sapuan,
A. Khalina,
E.S. Zainudin,
Omar Al-Shuja’a
Publication year - 2012
Publication title -
express polymer letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.695
H-Index - 72
ISSN - 1788-618X
DOI - 10.3144/expresspolymlett.2012.108
Subject(s) - materials science , kenaf , composite material , ultimate tensile strength , composite number , thermoplastic polyurethane , polyurethane , thermoplastic , fiber , elastomer
In this study, the effect of polymeric Methylene Diphenyl Diisocyanate (pMDI) chemical treatment on kenaf (Hibiscus cannabinus) reinforced thermoplastic polyurethane (TPU/KF) was examined using two different procedures. The first consisted of treating the fibers with 4% pMDI, and the second involved 2% NaOH + 4% pMDI. The composites were characterized according to their tensile properties, Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). The treatment of the composite with 4% pMDI did not significantly affect its tensile properties, but the treatment with 2% NaOH + 4% pMDI significantly increased the tensile properties of the composite (i.e., 30 and 42% increases in the tensile strength and modulus, respectively). FTIR also showed that treatment with 2% NaOH + 4% pMDI led to the strongest H-bonding. Additionally, the surface morphology of specimens after tensile fracture confirmed that the composite treated with 2% NaOH + 4% pMDI had the best adhesion and wettability