STABLE OSCILLATION OF MEMS RESONATORS BEYOND THE CRITICAL BIFURCATION POINT
Author(s) -
H.K. Lee,
J. Salvia,
S. Yoneoka,
Gaurav Bahl,
Yanlin Qu,
Renata Melamud,
Saurabh A. Chandorkar,
Matthew A. Hopcroft,
B. Kim,
Thomas W. Kenny
Publication year - 2010
Publication title -
1998 solid-state, actuators, and microsystems workshop technical digest
Language(s) - English
Resource type - Conference proceedings
DOI - 10.31438/trf.hh2010.18
Subject(s) - bifurcation , resonator , control theory (sociology) , limit (mathematics) , oscillation (cell signaling) , biological applications of bifurcation theory , bifurcation theory , limit cycle , saddle node bifurcation , physics , bifurcation diagram , loop (graph theory) , stability (learning theory) , microelectromechanical systems , computer science , mathematics , mathematical analysis , nonlinear system , optics , quantum mechanics , biology , genetics , control (management) , artificial intelligence , combinatorics , machine learning
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom