
OPTIMIZATION OF FLOCCULATION PROCESS BY MICROBIAL COAGULANT IN RIVER WATER
Author(s) -
Fatin Nabilah Murad
Publication year - 2017
Publication title -
iium engineering journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.141
H-Index - 6
eISSN - 2289-7860
pISSN - 1511-788X
DOI - 10.31436/iiumej.v18i2.740
Subject(s) - flocculation , turbidity , alum , effluent , coagulation , sedimentation , pulp and paper industry , water treatment , chemistry , suspended solids , ferric , environmental engineering , lime , wastewater , environmental science , sediment , materials science , engineering , geology , oceanography , psychology , paleontology , organic chemistry , psychiatry , metallurgy
The existing process of coagulation and flocculation are using chemicals that known as cationic coagulant such as alum, ferric sulfate, calcium oxide, and organic polymers. Thus, this study concentrates on optimizing of flocculation process by microbial coagulant in river water. Turbidity and suspended solids are the main constraints of river water quality in Malaysia. Hence, a study is proposed to produce microbial coagulants isolated locally for river water treatment. The chosen microbe used as the bioflocculant producer is Aspergillus niger. The parameters to optimization in the flocculation process were pH, bioflocculant dosage and effluent concentration. The research was done in the jar test process and the process parameters for maximum turbidity removal was validated. The highest flocculating activity was obtained on day seven of cultivation in the supernatant. The optimum pH and bioflocculant dosage for an optimize sedimentation process were between 4-5 and 2-3 mL for 0.3 g/L of effluent concentration respectively. The model was validated by using a river water sample from Sg. Pusu and the result showed that the model was acceptable to evaluate the bioflocculation process.