
Effects of non-uniform nanoparticle concentration on entropy generation
Author(s) -
Ahmer Mehmood,
Sajid Khan,
Muhammad Usman
Publication year - 2021
Publication title -
revista mexicana de física/revista mexicana de física
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.181
H-Index - 25
eISSN - 2683-2224
pISSN - 0035-001X
DOI - 10.31349/revmexfis.68.010601
Subject(s) - brinkman number , nanofluid , bejan number , laminar flow , entropy production , entropy (arrow of time) , mechanics , materials science , thermodynamics , prandtl number , nanoparticle , thermal , brownian motion , heat transfer , statistical physics , physics , mathematics , reynolds number , nanotechnology , nusselt number , turbulence , statistics
The entropy generation analysis of a thermal process is capable of determining the efficiency of that process and is therefore helpful to optimize the thermal system operating under various conditions. There are several ingredients upon which the phenomenon of entropy generation can depend, such as the nature of flow and the fluid, the assumed conditions, and the material properties of the working fluid. However, the dependence of entropy generation phenomenon upon such properties has so far not been fully realized, in view of the existing literature. On the other hand, based upon the existing studies, it has been established that the non-uniform concentration of nanoparticles in the base fluid does cause to enhance the heat transfer rate. Therefore, it is logical to investigate the entropy production under the impact of non-homogenous distribution of nanoparticles. Based upon this fact the aim of current study is to explore a comprehensive detail about the influence of non-homogeneous nanoparticles concentration on entropy production phenomenon by considering a laminar viscous flow past a moving continuous flat plate. Non-uniform concentration is considered in the nanofluid modeling in which the Brownian and thermophoretic diffusions are considered which impart significant effects on velocity and temperature profiles. An exact self-similar solution to this problem is observed to be possible and is reported. The effects of various controlling physical parameters such as Brinkman number, Schmidt number, Prandtl number, diffusion parameter, and concentration parameter on both local as well as total entropy generation number and Bejan number are elaborated by several graphs and Tables. The obtained results reveal a significant impact of all aforementioned parameters on entropy generation characteristics. It is observed that by a 20% increase in nanoparticles concentration the total entropy generation is increased up to 67% for a set of fixed values of remaining parameters.