z-logo
open-access-imgOpen Access
A study on microstructure and magnetic properties of nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) spinel ferrites
Author(s) -
Altaf Hussain,
Sofia Tahir,
Naseeb Ahmad,
Mohd Yussni Hashim,
A.B. Ziya,
Shahzadi Noreen
Publication year - 2021
Publication title -
revista mexicana de física/revista mexicana de física
Language(s) - English
Resource type - Journals
eISSN - 2683-2224
pISSN - 0035-001X
DOI - 10.31349/revmexfis.67.527
Subject(s) - materials science , crystallite , spinel , coercivity , ferrite (magnet) , microstructure , transmission electron microscopy , analytical chemistry (journal) , scanning electron microscope , magnetization , lattice constant , diffraction , nanotechnology , condensed matter physics , metallurgy , composite material , optics , magnetic field , chemistry , physics , chromatography , quantum mechanics
A low-temperature synthesis of novel nanostructured CoxNi1-xMn0.5Fe1.5O4(x=0,0.25,0.5,0.75,1) ferrites was carried out by sol-gel auto-combustion technique. The obtained nanostructured ferrites were investigated by employing the techniques of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometry (VSM). The XRD diffractograms of the prepared ferrites revealed the formation of a spinel phase with face centered cubic (fcc) structure belonging to Fd- m space group.  The average lattice parameter ‘a’ of ferrites exhibited a rise versus a rise in Co2+ concentration in accordance with the Vegard’s law. The SEM investigation of NiMn0.5Fe1.5O4 powder revealed an existence of octahedral-shaped morphology of ferrite grains. The TEM investigation of NiMn0.5Fe1.5O4 powder showed nanostructures of ferrite particles with sizes consistent with the crystallite sizes as estimated by Debye-Scherer’s formula. An EDX spectrum of NiMn0.5Fe1.5O4 powder confirmed its elemental composition. The M-H hysteresis loops recorded by VSM at room temperature revealed a dependence of coercivity (Hc), maximum magnetization (Mmax) and retentivity (Mr) on Co2+concentration. Due to the shape dependence of M-H loops on Co2+ concentration in compounds enabled their candidature for applications in memory devices and magnetic sensors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here