
Two-dimensional boson oscillator under a magnetic field in the presence of a minimal length in the non-commutative space
Author(s) -
Z. Selema,
A. Boumal
Publication year - 2021
Publication title -
revista mexicana de física/revista mexicana de física
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.181
H-Index - 25
eISSN - 2683-2224
pISSN - 0035-001X
DOI - 10.31349/revmexfis.67.226
Subject(s) - physics , commutative property , space (punctuation) , boson , momentum (technical analysis) , position and momentum space , mathematical physics , schrödinger equation , magnetic field , field (mathematics) , wave function , quantum mechanics , quantum electrodynamics , mathematics , pure mathematics , computer science , finance , economics , operating system
Minimal length in non-commutative space of a two-dimensional Klein-Gordon oscillator is investigated and illustrates the wave functions in the momentum space. The eigensolutions are found and the system is mapping to the well-known Schrodinger equation in a Pöschl-Teller potential.