
ПОРІВНЯЛЬНЕ ДОСЛІДЖЕННЯ МЕТОДІВ РОЗПІЗНАВАННЯ ОБЛИЧ
Author(s) -
О.О. Шумейко,
Vitaliy Volodymyrovych Shevchenko,
О.О. Жульковський,
І.І Жульковська
Publication year - 2021
Publication title -
matematične modelûvannâ
Language(s) - Ukrainian
Resource type - Journals
eISSN - 2519-8114
pISSN - 2519-8106
DOI - 10.31319/2519-8106.2(45)2021.246871
Subject(s) - artificial intelligence , python (programming language) , pattern recognition (psychology) , computer science , operating system
Розпізнавання облич завоювало свою популярність завдяки своїй унікальності серед інших біометричних методів, тому що має всі характеристики ефективної системи безпеки. Проте існують певні обмеження у системі розпізнавання облич, які необхідно дослідити та вивчити. Так, наприклад, вирішення таких проблем, як зміна освітлення, розташування об’єкту, емоцій, віку тощо потребують застосування спеціальних алгоритмів. Використання цих алгоритмів та їх комбінацій певною мірою сприятимуть вирішенню подібних задач. У роботі досліджені та застосовані аналіз основних компонентів, лінійний дискримінантний аналіз, незалежний аналіз компонентів та класифікація за допомогою машини опорних векторів. Для реалізації перелічених алгоритмів було використано мову Python та бібліотеку машинного навчання Scikit-learn. Проведено порівняння продуктивності систем на основі точності. Результати досліджень показують, що продуктивність SVM-класифікатора з використанням NMF є найгіршою з точки зору точності передбачення. Ефективність інших моделей, що були натреновані з використанням методів ICA, PCA та LDA, коливається в припустимих межах. Модель, навчена з використанням алгоритму PCA, працює з найвищою точністю передбачення.