z-logo
open-access-imgOpen Access
EXPERIMENTAL STUDY OF THE STATIC CHARACTERISTICS OF THE SYNCHRONOUS MACHINE IN THE MODE OF DYNAMIC BRAKING WITH INDUCTION RESISTANCE IN THE WINDING OF THE STATOR
Author(s) -
Сергій Вікторович Количев,
О.М. С'янов
Publication year - 2021
Publication title -
zbìrnik naukovih pracʹ dnìprodzeržinsʹkogo deržavnogo tehnìčnogo unìversitetu. tehnìčnì nauki/zbìrnik naukovih pracʹ dnìprovsʹkogo deržavnogo tehnìčnogo unìversitetu. tehnìčnì nauki
Language(s) - English
Resource type - Journals
eISSN - 2617-8389
pISSN - 2519-2884
DOI - 10.31319/2519-2884.37.2020.5
Subject(s) - stator , contactor , control theory (sociology) , torque , induction motor , rotor (electric) , harmonics , magnetic reluctance , synchronous motor , engineering , voltage , computer science , electrical engineering , physics , power (physics) , magnet , control (management) , quantum mechanics , artificial intelligence , thermodynamics
The article discusses the results of a study of the static electromechanical characteristics of a synchronous machine (SM) when prototypes of induction resistances (IR) with improved parameters are included in its stator circuits. Widespread in practice, dynamic braking (DB) of synchronous machines provides for the dissipation of the kinetic energy of the rotor in the resistance boxes included in the stator winding. In the process of stopping, to maintain the constancy of the average braking torque of the SM, a bulky relay-contactor shunt circuit for stator resistances is used. At low speeds, regulation of the excitation current of the SM or its forcing can also be applied. However, it is not possible to eliminate significant fluctuations in the electromagnetic moment in this way. To optimize the SM DB process, instead of resistance boxes, it was proposed to include a three-phase induction resistance in the stator winding, the value of which automatically decreases along with the stator current frequency. This approach allows you to drastically reduce the number of contact equipment and ensure smooth braking of the machine with electromagnetic moment fluctuations within narrow limits. Known IR designs are designed for asynchronous motors with a phase rotor and satisfy the requirements of the given quality factor of their starting characteristics, but cannot ensure the constancy of the torque on the SM shaft in the DB mode. Therefore, the objective of the work is to improve the design of the IR and obtain the necessary inhibitory mechanical characteristics of the SM using experimental studies. The work provides a pilot plant diagram and a drawing explaining the design features of the IR. The studies were performed for a synchronous machine, type МСА-72 / 4А, equipped with a thyristor exciter and a speed sensor. In three phases of the SM stator, IRs connected by a "star" were turned on. The experiments were carried out in the direction of obtaining the necessary braking characteristics of the SM by varying the design of the internal elements of the IR. The figures show the mechanical characteristics of the SM obtained in the process of studying the effect on them of the thickness of the inner steel rings and massive ferromagnetic disks at three values of the fixed excitation current. The research results show that the desired form of the mentioned characteristics of the SM is achieved only when using massive internal elements in the design of the IR. A separate figure shows the curves of changes in some values of the SM load, which will facilitate the development of methods for calculating the DB mode of the machine for the optimal design of the IR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here