z-logo
open-access-imgOpen Access
KOMPARASI METODE CLUSTERING K-MEANS DAN K-MEDOIDS DENGAN MODEL FUZZY RFM UNTUK PENGELOMPOKAN PELANGGAN
Author(s) -
Elly Muningsih Amik Bsi Yogyakarta
Publication year - 2018
Publication title -
evolusi/evolusi : jurnal sains dan managemen amik bsi purwokerto
Language(s) - English
Resource type - Journals
eISSN - 2657-0793
pISSN - 2338-8161
DOI - 10.31294/evolusi.v6i2.4600
Subject(s) - cluster analysis , medoid , data mining , k medoids , computer science , fuzzy clustering , mathematics , artificial intelligence , cure data clustering algorithm
~ The K-Means method is one of the clustering methods that is widely used in data clustering research. While the K-Medoids method is an efficient method used for processing small data. This study aims to compare two clustering methods by grouping customers into 3 clusters according to their characteristics, namely very potential (loyal) customers, potential customers and non potential customers. The method used in this study is the K-Means clustering method and the K-Medoids method. The data used is online sales transaction. The clustering method testing is done by using a Fuzzy RFM (Recency, Frequenty and Monetary) model where the average (mean) of the third value is taken. From the data testing is known that the K-Means method is better than the K-Medoids method with an accuracy value of 90.47%. Whereas from the data processing carried out is known that cluster 1 has 16 members (customers), cluster 2 has 11 members and cluster 3 has 15 members. Keywords : clustering, K-Means method, K-Medoids method, customer, Fuzzy RFM model. Abstrak ~ Metode K-Means merupakan salah satu metode clustering yang banyak digunakan dalam penelitian pengelompokan data. Sedangkan metode K-Medoids merupakan metode yang efisien digunakan untuk pengolahan data yang kecil. Penelitian ini bertujuan untuk membandingkan atau mengkomparasi dua metode clustering dengan cara mengelompokkan pelanggan menjadi 3 cluster sesuai dengan karakteristiknya, yaitu pelanggan sangat potensial (loyal), pelanggan potensial dan pelanggan kurang (tidak) potensial. Metode yang digunakan dalam penelitian ini adalah metode clustering K-Means dan metode K-Medoids. Data yang digunakan adalah data transaksi penjualan online. Pengujian metode clustering yang dilakukan adalah dengan menggunakan model Fuzzy RFM (Recency, Frequenty dan Monetary) dimana diambil rata-rata (mean) dari nilai ketiga tersebut. Dari pengujian data diketahui bahwa metode K-Means lebih baik dari metode K-Medoids dengan nilai akurasi 90,47%. Sedangkan dari pengolahan data yang dilakukan diketahui bahwa cluster 1 memiliki 16 anggota (pelanggan), cluster 2 memiliki 11 anggota dan cluster 3 memiliki 15 anggota. Kata kunci : clustering, metode K-Means, metode K-Medoids, pelanggan, model Fuzzy RFM.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here