z-logo
open-access-imgOpen Access
Identification of Pneumonia using The K-Nearest Neighbors Method using HOG Fitur Feature Extraction
Author(s) -
Nurul Khairina,
Theofil Tri Saputra Sibarani,
Rizki Muliono,
Zulfikar Sembiring,
Muhathir Muhathir
Publication year - 2022
Publication title -
jite (journal of informatics and telecommunication engineering)
Language(s) - English
Resource type - Journals
eISSN - 2549-6255
pISSN - 2549-6247
DOI - 10.31289/jite.v5i2.6216
Subject(s) - pneumonia , cosine similarity , artificial intelligence , pattern recognition (psychology) , precision and recall , computer science , f1 score , feature extraction , recall , discrete cosine transform , feature (linguistics) , mathematics , medicine , psychology , image (mathematics) , linguistics , philosophy , cognitive psychology
Pneumonia is a wet lung disease. Pneumonia is generally caused by viruses, bacteria or fungi. Not infrequently Pneumonia can cause death. The K-Nearest Neighbors method is a classification method that uses the majority value from the closest k value category. At this time people are not too worried about pneumonia because this pneumonia has symptoms like a normal cough. However, fast and accurate information from health experts is also very necessary so that pneumonia symptoms can be recognized early and how to deal with them can also be done faster. In this study, researchers will diagnose pneumonia to obtain information quickly about the symptoms of pneumonia. This information will adopt human knowledge into computers designed to solve the problem of identifying pneumonia. In this study, the K-Nearest Neighbors method will be combined with the HOG Extraction Feature to identify pneumonia more accurately. The KNN classification used is Fine KNN, Cosine KNN, and Cubic KNN. Where will be seen how the value of accuracy, precision, recall, and fi-score. The results showed that the classification could run well on the Fine KKN, Cosine KNN, and Cubic KNN methods. Fine KNN has an accuracy rate of 80.67, Cosine KNN has an accuracy rate of 84,93333, and Cubic KNN has an accuracy rate of 83,13333. Fine KNN has precision, recall and f1-score values of 0.794842, 0.923706, and 0.854442. Cosine KNN has precision, recall and f1-score values of 0.803048, 0.954039, and 0.872056. Cubic KNN has precision, recall and f1-score values of 0.73388, 0.964561, and 0.833555. From the test results, positive and negative identification of pneumonia was found to be more accurate with the Cosine KNN classification which reached 84,93333.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here