
Effect of α-SiO2 substrate on the CO adsorption onto graphene using density functional theory calculations
Author(s) -
Thi Viet Bac Phung,
Ba Lich Pham,
Van An Dinh
Publication year - 2021
Publication title -
tạp chí khoa học và công nghệ việt nam (b, online) (vietnam journal of science and technology - most)/tạp chí khoa học và công nghệ việt nam (điện tử)/tạp chí khoa học và công nghệ việt nam (b, print) (vietnam journal of science and technology - most)
Language(s) - English
Resource type - Journals
eISSN - 2615-9759
pISSN - 1859-4794
DOI - 10.31276/vjst.63(8).01-08
Subject(s) - graphene , adsorption , density functional theory , materials science , graphene nanoribbons , band gap , chemical physics , substrate (aquarium) , molecule , bilayer graphene , electronic band structure , nanotechnology , computational chemistry , condensed matter physics , chemistry , optoelectronics , physics , organic chemistry , oceanography , geology
The adsorption mechanism of CO gas molecule onto the surface of free-standing graphene and graphene on the α-SiO2 substrate is studied using the density functional theory. CO molecule is found to be physically adsorbed on the graphene surface. The adsorption properties of CO gas on free-standing graphene and graphene/α-SiO2, such as adsorption energy, adsorption distance, and response length, are calculated in detail. α-SiO2 has been found as a good substrate to enhance the adsorption energy of CO onto graphene. The electronic band structures and density of states (DOS) analysis results show that the interaction between α-SiO2 and graphene breaks the symmetry of graphene and a tunnelling bandgap occurs at the Dirac point. α-SiO2 substrate modifies the electronic band structures of free-standing graphene and opens a narrow bandgap of 51 meV. The calculated charge transfer data suggest that the presence of α-SiO2 enhances the charge donation of CO molecule to the graphene surface.