z-logo
open-access-imgOpen Access
N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine attenuates oxygen-glucose deprivation and reoxygenation-induced cerebral ischemia-reperfusion injury via regulation of microRNAs
Author(s) -
Tiansong Yang,
Dongyan Wang,
Yuanyuan Qu,
Yulin Wang,
Yuenan Feng,
Yan Yang,
Qiang Luo,
Xiaowei Sun,
Guoqiang Yu,
Jie He,
Zhongren Sun,
Yulan Zhu
Publication year - 2020
Publication title -
journal of integrative neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.336
H-Index - 33
eISSN - 1757-448X
pISSN - 0219-6352
DOI - 10.31083/j.jin.2020.02.1236
Subject(s) - microrna , ischemia , reperfusion injury , apoptosis , reactive oxygen species , sh sy5y , downregulation and upregulation , chemistry , microbiology and biotechnology , pharmacology , biology , medicine , neuroblastoma , cell culture , biochemistry , gene , genetics
Cerebral ischemia-reperfusion injury is a common complication that occurs during stroke treatment. Increasingly, microRNAs have been found to participate in the modulation of neuron function; however, the role of microRNAs in cerebral ischemia-reperfusion injury remains unclear. We developed a mechanism of cerebral ischemia-reperfusion injury using a cellular model of oxygen-glucose deprivation and reoxygenation-induced injury in human neuroblastoma SH-SY5Y cells. We found that treatment of oxygen-glucose deprivation and reoxygenation promoted the apoptosis of SH-SY5Y cells. Analysis of microRNAs sequencing revealed that the expression of microRNA-27a-5p was induced, and microRNA-29b-3p expression was inhibited in neuroblastoma cells exposed to oxygen-glucose deprivation and reoxygenation. Either inhibition of microRNA-27a-5p or overexpression of microRNA-29b-3p mitigated oxygen-glucose deprivation and reoxygenation-induced cellular apoptosis. Bach1 was authenticated as a target gene of microRNA-27a-5p. Also, microRNA-27a-5p mediated the expression of Bach 1 along with its downstream signaling. N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine protected against oxygen-glucose deprivation and reoxygenation-induced apoptosis while decreasing miR-27a-5p expression and increasing microRNA-29b-3p expression. These results suggested that microRNA-27a-5p and microRNA-29b-3p may contribute to oxygen-glucose deprivation and reoxygenation-induced cellular injury. At the same time, N-hydroxy-N'-(4-butyl-2-methylphenyl)-formamidine protects SH-SY5Y cells against oxygen-glucose deprivation and reoxygenation-induced injury partly through the inhibition of microRNA-27-a-5p and promotion of the Bach1/HO-1 signaling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here