
Dl-3-n-butylphthalide inhibits phenytoin-induced neuronal apoptosis in rat hippocampus and cerebellum
Author(s) -
Junmin Chen,
Na Liu,
Xiaopeng Wang,
Yanying Zhao,
Jianbin He,
Lingfeng Yang,
Qiang Sun,
Jing Zhao,
Linjing Wang,
Lei Chen
Publication year - 2019
Publication title -
journal of integrative neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.336
H-Index - 33
eISSN - 1757-448X
pISSN - 0219-6352
DOI - 10.31083/j.jin.2019.03.174
Subject(s) - phenytoin , hippocampal formation , hippocampus , endocrinology , medicine , cerebellum , nissl body , neuroprotection , neuron , apoptosis , chemistry , anticonvulsant , biology , staining , epilepsy , neuroscience , biochemistry , pathology
Rats were divided into six groups: sham/control , Dl-3-n-butylphthalide, P1 (low phenytoin, 100 mg/kg), P2 (high phenytoin, 200 mg/kg), NP1 (Dl-3-n-butylphthalide 80 mg/kg, phenytoin 100 mg/kg), NP2 (Dl-3-n-butylphthalide 80 mg/kg, phenytoin 200 mg/kg). Hematoxylin/eosin and Nissl staining showed that, compared to the sham/control group, the Dl-3-n-butylphthalide group had no obvious hippocampal and cerebellar neuron loss, but there was a significant neuron loss in the P1 and P2 groups (P < 0.05), which was more obvious in the P2 group (P < 0.05). The positive expression of Bax and Bcl-2 proteins in hippocampal and cerebellar neurons was not significantly different between sham and Dl-3-n-butylphthalide groups; however, compared to sham, Bax expression was significantly increased and Bcl-2 was significantly decreased in the hippocampal and cerebellar neurons of rats in both P1 and P2 groups (P < 0.05), being more obvious in the P2 group (P < 0.05). Furthermore, the administration of Dl-3-n-butylphthalide attenuated the deleterious effects of phenytoin (P < 0.05). Our results indicate that phenytoin causes apoptosis of hippocampal and cerebellar neurons in rats in a dose-dependent manner, with the effect of a higher dose being more obvious, whereas, Dl-3-n-butylphthalide inhibits the phenytoin-induced apoptosis of neurons and has a neuroprotective role.