z-logo
open-access-imgOpen Access
Looking at radio-quiet AGN with radio polarimetry
Author(s) -
S. Silpa,
Preeti Kharb
Publication year - 2022
Publication title -
acta astrophysica taurica
Language(s) - English
Resource type - Journals
ISSN - 2712-925X
DOI - 10.31059/aat.vol3.iss1.pp17-22
Subject(s) - physics , active galactic nucleus , astrophysics , quasar , polarization (electrochemistry) , astronomy , radio frequency , radio galaxy , astrophysical jet , outflow , x shaped radio galaxy , very long baseline interferometry , galaxy , meteorology , telecommunications , chemistry , computer science
The dominant radio emission mechanism in radio-quiet quasars (RQQs) is an open question. Primary contenders include: low-power radio jets, winds, star-formation and coronal emission. Our work suggests that radio polarization and emission-line studies can help to distinguish between these scenarios and determine the primary contributor. Our multi-frequency, multi-scale radio polarization study has revealed a composite jet and "wind" radio outflow in the radio-intermediate quasar, III Zw 2, as well as in the BALQSO, Mrk 231. Our radio polarization study in conjunction with the [O III] emission-line study of five type 2 RQQs have provided insights on the interplay of jets/winds and emission-line gas. These sources reveal an anti-correlation between polarized radio emission and [O III] emission. This is similar to that observed in some radio-loud active galactic nuclei (AGN) in the literature and suggests that the radio emission could be depolarized by the emission-line gas. Overall, our work suggests that a close interaction between the radio outflow and the surrounding gaseous environment is likely to be responsible for their stunted form in RQ and RI AGN.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here