
Intelligent Lunar Landing Site Recommender
Author(s) -
A. W. Thomas,
Digina Derose,
Sahaya Cyril,
Smita Dange
Publication year - 2021
Publication title -
international journal of engineering and management research
Language(s) - English
Resource type - Journals
eISSN - 2394-6962
pISSN - 2250-0758
DOI - 10.31033/ijemr.11.2.26
Subject(s) - terrain , astrobiology , planet , space exploration , computer science , geology , solar system , remote sensing , geography , aerospace engineering , engineering , astronomy , cartography , physics
Space exploration is brewing to be one of the most sought after fields in today’s world with each country pooling in resources and skilled minds to be one step ahead of the other. The core aspect of space exploration is exoplanet exploration, i.e., by sending unmanned rovers or manned spaceships to planets and celestial bodies within and beyond our solar system to determine habitable planets. Landscape inspection and traversal is the core feature of any planetary exploration mission. It is often a strenuous task to carry out a machine learning experiment on an extraterrestrial surface like the Moon. Consequent lunar explorations undertaken by various space agencies in the last four decades have helped to analyze the nature of the Lunar Terrain through satellite images. The motion of the rovers has traditionally been governed by the use of sensors that achieve obstacle avoidance. In this project we aim to detect craters on the lunar landscape which in turn will be used to determine soft landing sites on the lunar landscape for exploring the terrain, based on the classified lunar landscape images.