z-logo
open-access-imgOpen Access
Influence of Using Various Percentages of Slag on Mechanical Properties of Fly Ash-based Geopolymer Concrete
Author(s) -
Sarah Sameer Hussein,
Nada Mahdi Fawzi
Publication year - 2021
Publication title -
maǧallaẗ al-handasaẗ/journal of engineering
Language(s) - English
Resource type - Journals
eISSN - 2520-3339
pISSN - 1726-4073
DOI - 10.31026/j.eng.2021.10.04
Subject(s) - fly ash , ground granulated blast furnace slag , geopolymer , materials science , cementitious , cement , slag (welding) , metallurgy , portland cement , waste management , composite material , engineering
In order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of slag on mechanical properties. This paper showed the details of the experimental work that has been undertaken to search and make tests the strength of geopolymer mixtures made of fly ash and then replaced fly ash with slag in different percentages. The geopolymer mixes were prepared using a ground granulated blast-furnace slag (GGBFS) blend and low calcium fly ash class F activated by an alkaline solution. The mixture compositions of fly ash to slag were (0.75:0.25, 0.65:0.35, 0.55:0.45) by weight of cementitious materials respectively and compared with reference mix of conventional concrete with mix proportion 1:1.5:3 (cement: sand: coarse agg.), respectively. The copper fiber was used as recycled material from electricity devices wastes such as (machines, motors, wires, and electronic devices) to enhance the mechanical properties of geopolymer concrete. The heat curing system at 40 oC temperature was used. The results revealed that the mix proportion of 0.45 blast furnace slag and 0.55 fly ash produced the best strength results. It also showed that this mix ratio could provide a solution for the need for heat curing for fly ash-based geopolymer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here