
Field evaluation of arbuscular mycorrhizal fungi (AMF) for microbial activities and yield of maize under alluvial soil
Author(s) -
Mahendra Singh,
Rajiv Rakshit,
Kasturikasen Beura,
Manohar Lal
Publication year - 2016
Publication title -
journal of applied and natural science
Language(s) - English
Resource type - Journals
eISSN - 2231-5209
pISSN - 0974-9411
DOI - 10.31018/jans.v8i4.1086
Subject(s) - population , colonization , biology , inoculation , phosphorus , spore , glomus , arbuscular mycorrhizal fungi , field experiment , arbuscular mycorrhizal , agronomy , horticulture , zoology , botany , chemistry , bacteria , symbiosis , ecology , medicine , genetics , environmental health , organic chemistry
A field experiment was conducted to evaluate the response of AMF species with different phosphorus (P) levels for root colonization, microbial population under maize in an alluvial soil. Of all the species of mycorrhizae taken under consideration, G. mosseae along with 75% RDF of P was found to perform better in terms of root colonization, number of spores and grain yield. Application of G. mosseae @ 10 kg ha-1 + 50% P + 100% NK produced significantly higher root colonization by 177.32, 55.20, 37.75 and 101.95 per cent over the treatments 100% RDF, G. mosseae @ 10 kg ha-1 + 75% P + 100% NK, G. coronatum @ 10 kg ha-1 + 75% P + 100% NK, G. decipien @ 10 kg ha-1 + 75% P + 100% NK and control, respectively. The similar trend was observed for number of spore count. The maximum number of bacteria (40×10-5 cfu g-1 soil) was found with the inoculation of G. mosseae @ 10 kg ha-1 + 75% P + 100% NK at flowering stage. The maximum grain yield (7656.61 kg ha-1) was recorded with the application of G. mosseae @ 10 kg ha-1 + 75% P + 100% NK, which was 111.92 per cent significantly higher the control treatment. G. mosseae along with 75% RDF of phosphorus inoculation proved to be effective in modifying the soil microbe population and community structure and also in enhancing the grain yield.