z-logo
open-access-imgOpen Access
Fabrication and performance evaluation of vertical farming structures
Author(s) -
Shaheemath Suhara K K,
Priya G. Nair
Publication year - 2021
Publication title -
journal of applied and natural science
Language(s) - English
Resource type - Journals
eISSN - 2231-5209
pISSN - 0974-9411
DOI - 10.31018/jans.v13isi.2777
Subject(s) - agriculture , yield (engineering) , drip irrigation , environmental science , computer science , agricultural engineering , irrigation , materials science , engineering , agronomy , composite material , biology , ecology
This study was undertaken to fabricate Vertical Farming Structures (VFS) suitable for homestead and evaluate the performance of fabricated vertical farming structures. The experiment was conducted in Kelappaji College of Agricultural Engineering and Technology (KCAET), Tavanur, in Malappuram district, Kerala. Two vertical farming structures DVFS 1 (Developed vertical farming structure 1) and DVFS 2 (Developed vertical farming structure 2) were designed and fabricated. The drip irrigation system was adopted to irrigate the plants to reduce the wastage of water. Amaranthus seedlings of variety ‘Kannara local’ was taken for the trial. Climatic parameters and biometric observations were analyzed to compare and evaluate the performances of vertical farming structures. Correlation analysis was done using IBM SPSS statistics 25 software. The analysis of trials revealed that DVFS 1 showed better performance in every aspect compared to DVFS 2. The biometric observations like plant height and number of leaves were more in T1 at the right side and followed by T3 at the right side of DVFS 1. The plant characteristics are highly correlated with the light intensity. This was the reason for more growth was observed on the right side of DVFS 1. The maximum yield was obtained from the DVFS 1 (58%) than DVFS 2 (42%).  The study recommended that usage of the platform like structure with triangular cross-section was more advantageous than the structure with tiers one over the other with Poly Vinyl Chloride (PVC) splits.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here