
Short term effects of restricted food availability and peripheral leptin injections in redheaded bunting, Emberiza bruniceps
Author(s) -
Neelu Gupta,
Samya Das,
Avneesh Kumar,
Sanjay Kumar Bhardwaj,
Nidhi Yadav
Publication year - 2021
Publication title -
journal of applied and natural science
Language(s) - English
Resource type - Journals
eISSN - 2231-5209
pISSN - 0974-9411
DOI - 10.31018/jans.v13i4.3139
Subject(s) - leptin , evening , bunting , morning , biology , endocrinology , medicine , physiology , zoology , ecology , obesity , physics , astronomy
Migratory birds need continued food supply and efficient metabolic machinery to meet high energy demands of the magnanimous feat of flight. Two questions are important i.e. as to 1) how a bird adapts to a temporary food constrain on a daily basis, and 2) how peripheral leptin, an anorectic hormone, impacted feeding and migratory behaviour in buntings? The aim of this study was to induce a non-photoperiodic tweak in the physiology of redheaded buntings through exogenous leptin administration and study its effect on their food intake and migratory behaviour. Groups of male redheaded buntings, Emberiza bruniceps (n=17) were transferred from short (8L: 16D) to long (16L: 8D) days and presented with food only either for first (morning food presence, MFP) or second (evening food presence, EFP) half of the 16h lighted phase, while control group received food ad libitum. Total daily food intake (FI) did not differ significantly between the MFP, EFP and controls, but hourly FI in MFP and EFP indicated increased activity differences based on time of food availability and bird’s tendency to cache food/ recompense for food scarcity during migration. In another experiment, a chemical tweak in bird’s FI was induced by peripheral administration of leptin, to add to current understanding of transition in buntings’ metabolic efficiency during high energy demanding migratory journey. Exogenous leptin appeared to safeguard cadaveric effect of exogenous injection in migrating buntings through promoting blood cholesterol and reduced liver fibrosis. Food restriction in the morning was better responded by buntings than that in evening. Therefore, migratory buntings exhibited diurnal variation in response to food scarcity.