z-logo
open-access-imgOpen Access
PERBANDINGAN APLIKASI METODE CROSS ENTROPY DAN PARTICLE SWARM OPTIMIZATION PADA SUPPORT VECTOR MACHINE
Author(s) -
Herlina Herlina,
Dwi Yuli Rakhmawati
Publication year - 2018
Publication title -
heuristic/heuristic
Language(s) - English
Resource type - Journals
eISSN - 2723-1585
pISSN - 1693-8232
DOI - 10.30996/he.v15i01.1516
Subject(s) - support vector machine , mathematics , artificial intelligence , pattern recognition (psychology) , computer science
Support Vector Machine (SVM) merupakan salah satu metode klasifikasi yang banyak digunakan oleh para ilmuwan karena memiliki keunggulan dalam menemukan solusi yang bersifat global optimal. Pada penelitian ini, metode Cross Entropy (CE) dan Particle Swarm Optimization (PSO) akan diterapkan pada SVM untuk permasalahan klasifikasi dua kelas (binary class classification). Metode CE dan PSO akan digunakan untuk menemukan solusi optimal dari dual SVM. Dengan diterapkannya metode CE dan PSO pada SVM, akan mempersingkat waktu komputasi jika dibandingkan dengan metode SVM standar dengan tetap mempertahankan tingkat akurasinya tetap terjaga dengan baik. Uji coba metode CE-SVM dan PSO-SVM akan diterapkan dengan mengambil dataset dari permasalahan nyata yang diambil dari UCI repository, yaitu Haberman’s survival dataset dan liver disorders dataset. Hasil yang didapat dari metode CE-SVM dan PSO-SVM akan dibandingkan dari segi waktu komputasi dan tingkat akurasi. PSO-SVM membutuhkan waktu komputasi yang lebih singkat dibandingkan dengan CE-SVM dan SVM standar. Kedua metode PSO-SVM dan CE-SVM memberikan tingkat akurasi yang baik dibandingkan dengan SVM standar.Kata kunci: Cross Entropy, Particle Swarm Optimization, Support Vector Machine, Klasifikasi

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here