
On the value distribution of a differential monomial and some normality criteria
Author(s) -
Wei Lü,
Bikash Chakraborty
Publication year - 2021
Publication title -
matematičnì studìï/matematičnì studìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 8
eISSN - 2411-0620
pISSN - 1027-4634
DOI - 10.30970/ms.56.1.55-60
Subject(s) - meromorphic function , normal family , mathematics , monomial , multiplicity (mathematics) , combinatorics , distribution (mathematics) , domain (mathematical analysis) , normality , transcendental function , transcendental number , polynomial , pure mathematics , mathematical analysis , statistics
The aim of this paper is to study the zero distribution of the differential polynomial $\displaystyle af^{q_{0}}(f')^{q_{1}}...(f^{(k)})^{q_{k}}-\varphi,$where $f$ is a transcendental meromorphic function and $a=a(z)(\not\equiv 0,\infty)$ and $\varphi(\not\equiv 0,\infty)$ are small functions of $f$. Moreover, using this value distribution result, we prove the following normality criterion for family of analytic functions:\\ {\it Let $\mathscr{F}$ be a family of analytic functions on a domain $D$ and let $k \geq1$, $q_{0}\geq 2$, $q_{i} \geq 0$ $(i=1,2,\ldots,k-1)$, $q_{k}\geq 1$ be positive integers. If for each $f\in \mathscr{F}$: i.\ $f$ has only zeros of multiplicity at least $k$,\ ii.\ $\displaystyle f^{q_{0}}(f')^{q_{1}}\ldots(f^{(k)})^{q_{k}}\not=1$,then $\mathscr{F}$ is normal on domain $D$.