
On pseudobounded and premeage paratopological groups
Author(s) -
Alex Ravsky,
Тарас Банах
Publication year - 2021
Publication title -
matematičnì studìï/matematičnì studìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 8
eISSN - 2411-0620
pISSN - 1027-4634
DOI - 10.30970/ms.56.1.20-27
Subject(s) - combinatorics , group (periodic table) , identity (music) , mathematics , natural number , integer (computer science) , philosophy , physics , computer science , aesthetics , quantum mechanics , programming language
Let $G$ be a paratopological group.Following F.~Lin and S.~Lin, we say that the group $G$ is pseudobounded,if for any neighborhood $U$ of the identity of $G$,there exists a natural number $n$ such that $U^n=G$.The group $G$ is $\omega$-pseudobounded,if for any neighborhood $U$ of the identity of $G$, the group $G$ is aunion of sets $U^n$, where $n$ is a natural number.The group $G$ is premeager, if $G\ne N^n$ for any nowhere dense subset $N$ of$G$ and any positive integer $n$.In this paper we investigate relations between the above classes of groups andanswer some questions posed by F. Lin, S. Lin, and S\'anchez.