z-logo
open-access-imgOpen Access
A note on the value distribution of $\phi f^2 f^{(k)}-1$
Author(s) -
Pulak Sahoo,
Gurudas Biswas
Publication year - 2021
Publication title -
matematychni studii
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 8
eISSN - 2411-0620
pISSN - 1027-4634
DOI - 10.30970/ms.55.1.64-75
Subject(s) - meromorphic function , mathematics , function (biology) , entire function , transcendental function , distribution (mathematics) , combinatorics , polynomial , value (mathematics) , integer (computer science) , transcendental number , pure mathematics , mathematical analysis , statistics , evolutionary biology , computer science , biology , programming language
In this paper, we study the value distribution of the differential polynomial $\varphi f^2f^{(k)}-1$, where $f(z)$ is a transcendental meromorphic function, $\varphi (z)\;(\not\equiv 0)$ is a small function of $f(z)$ and $k\;(\geq 2)$ is a positive integer. We obtain an inequality concerning the Nevanlinna Characteristic function $T(r,f)$ estimated by reduced counting function only. Our result extends the result due to J.F. Xu and H.X. Yi [J. Math. Inequal., 10 (2016), 971-976].

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom