Open Access
Finitary approximations of coarse structures
Author(s) -
Ігор Протасов
Publication year - 2021
Publication title -
matematičnì studìï/matematičnì studìï
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 8
eISSN - 2411-0620
pISSN - 1027-4634
DOI - 10.30970/ms.55.1.33-36
Subject(s) - finitary , countable set , prime (order theory) , mathematics , combinatorics , discrete mathematics , class (philosophy) , computer science , artificial intelligence
A coarse structure $ \mathcal{E}$ on a set $X$ is called finitary if, for each entourage $E\in \mathcal{E}$, there exists a natural number $n$ such that $ E[x]< n $ for each $x\in X$. By a finitary approximation of a coarse structure $ \mathcal{E}^\prime$, we mean any finitary coarse structure $ \mathcal{E}$ such that $ \mathcal{E}\subseteq \mathcal{E}^\prime$.If $\mathcal{E}^\prime$ has a countable base and $E[x]$ is finite for each $x\in X$ then $ \mathcal{E}^\prime$has a cellular finitary approximation $ \mathcal{E}$ such that the relations of linkness on subsets of $( X,\mathcal{E}^\prime)$ and $( X, \mathcal{E})$ coincide.This answers Question 6 from [8]: the class of cellular coarse spaces is not stable under linkness. We define and apply the strongest finitary approximation of a coarse structure.