z-logo
open-access-imgOpen Access
Pengaruh Cahaya dan Kualitas Citra dalam Klasifikasi Kematangan Pisang Cavendish Berdasarkan Ciri Warna Menggunakan Artificial Neural Network
Author(s) -
Aditya Dwi Putro,
Arief Hermawan
Publication year - 2021
Publication title -
matrik
Language(s) - Italian
Resource type - Journals
ISSN - 2476-9843
DOI - 10.30812/matrik.v21i1.1396
Subject(s) - physics , horticulture , mathematics , biology
Buah pisang merupakan komoditas yang memberikan kontribusi besar terhadap angka produksi buah nasional maupun internasional. Pemerintah melalui Badan Standarisasi Nasional menetapkan standar untuk buah pisang, menjaga mutu buah pisang. Tujuan dari penelitian ini adalah menganalisa pengaruh cahaya dan kualitas citra dalam mengklasifikasikan tingkat kematangan buah pisang berdasarkan ciri warna buah pisang di Kebun Pisang Cavendish kabupaten banyumas jawa tengah sesuai dengan SNI 7422:2009[1]. Pisang yang terdapat di Kebun Pisang Cavendish ini beraneka ragam kualitas, sebagai buah lokal yang memiliki nilai ekonomi tinggi dan memiliki potensi pasar yang masih terbuka luas, pisang menjadi salah satu komoditas buah-buahan yang dapat diandalkan. Permasalahan yang sering ditemukan selain resource dan ketelitian yakni kurang tepatnya dan kurang pengetahuannya karyawan dalam membedakan tingkat kematangan pisang terutama karyawan baru. Artificial Neural Network digunakan sebagai metode dalam proses pengklasifikasian. Dataset pada penelitian ini adalah 80 citra buah pisang yang diambil per tandan terdiri dari 40 tandan citra pisang Cavendish yang diambil di pagi hari dengan kualitas citra bagus 20 dan kualitas citra tidak bagus 20, 40 tandan citra pisang Cavendish yang diambil di sore hari dengan kualitas citra bagus 20 dan kualitas citra tidak bagus 20. Tingkat kematangan pisang pada penelitian ini yaitu mentah dan matang. pengujian menghasilkan Akurasi tertinggi dalam proses klasifikasi kategori buah pisang cavendish menggunakan epoch 5000, goal 0.0001 dan learning rate 0.1 dengan jumlah akurasi sebesar 100% dengan model trainlm dan waktu 1.6 detik.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here