z-logo
open-access-imgOpen Access
A Review of CO2 Adsorption From Ambient Air (Direct Air Capture)
Author(s) -
Hind Jihad Kadhim Shabbani
Publication year - 2020
Publication title -
mağallaẗ al-qādisiyyaẗ li-l-ʻulūm al-handasiyyaẗ
Language(s) - English
Resource type - Journals
eISSN - 2411-7773
pISSN - 1998-4456
DOI - 10.30772/qjes.v13i1.644
Subject(s) - adsorption , materials science , combustion , chemical engineering , amine gas treating , diamine , atmosphere (unit) , metal organic framework , aqueous solution , nanotechnology , chemistry , organic chemistry , polymer chemistry , thermodynamics , physics , engineering
Direct Air Capture (DAC) has risen in the past decade as a promising choice to remove CO2 directly from ambient air. Although there are many technologies like pre-combustion, post-combustion and oxy-combustion to mitigate the emissions of CO2, there is still a need for a better or a complementary technology in controlling these emissions. Even though, there are many options for adsorbents that can be used, metal-organic frameworks (MOFs), which are hybrid materials with a crystalline structure, tunable pores, and high surface area, have risen as a promising candidate.  Functionalizing MOFs with amine groups will greatly enhance their capacity towards CO2, like mmen-M2 (dobpdc) (M=Mg, Fe, Mn, Zn, Co). These adsorbents show S-shaped adsorption isotherms and have a very high affinity to CO2 under atmospheric conditions, due to the cooperative insertion of CO2 into mmen-M2 (dobpdc) that leads to their unique adsorption isotherms. The energy required to regenerate these materials using small heat variations makes a better choice than aqueous amines. This mechanism has been studied by using X-Ray Diffraction (XRD) and spectroscopy experiments. Furthermore, a thermodynamic study has been reviewed to understand the mechanism through which CO2 is inserted into the diamine bond. These materials are a promising choice for the removal of CO2 directly from the atmosphere and require more future research.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here