z-logo
open-access-imgOpen Access
Experimental studies of the influence of pressure of slurry fuel and air on the spray cone structure during atomization
Author(s) -
D. V. Gvozdyakov,
А. V. Zenkov,
В. Е. Губин,
Maxim Vedyashkin
Publication year - 2019
Publication title -
izvestiâ vysših učebnyh zavedenij. problemy ènergetiki
Language(s) - English
Resource type - Journals
eISSN - 2658-5456
pISSN - 1998-9903
DOI - 10.30724/1998-9903-2019-21-5-110-123
Subject(s) - slurry , aerosol , materials science , spray characteristics , mechanics , spray nozzle , atmospheric pressure , composite material , chemistry , nozzle , thermodynamics , meteorology , physics , organic chemistry
Results of experimental studies of pneumomechanical atomization process of slurry fuel with a plasticizer in an aerodynamic simulator of power boiler furnace are presented. Analysis of the current state in the field of research of slurry fuel atomization processes has been conducted. Influence of pressure of slurry fuel and air on the structure of the emerging spray cone have been analyzed. The values of characteristic dimensions of three zones of spray cone have been determined: core, middle and outer zones. Effect of pressure of the sprayed slurry fuel and air on the period of stable spray cone formation and geometric characteristics of the zones has been experimentally confirmed. Ranges of velocities and sizes of droplets in the flow at various pressures have been distinguished. The quantitative values of slurry fuel droplets with different velocities in the process of its pneumatic spraying have been obtained. It has been established that the largest number of particles in the study area have velocities up to 8 m/s; a significant number of droplets (up to 20%) have velocities from 8 to 32 m/s; velocities of 32 m/s and more are typical for 1% of droplets. During the results processing, aerosol particles with a size of 1 micron or less have not been taken into account. The values of We criterion for the respective sizes and velocities of the sprayed fuel droplets have been determined. It has been established that significant part of the droplets undergoes catastrophic crushing, which is characteristic for the values of We numbers from 7800 and higher. The obtained results can be used for mathematical and physical modeling of the process of slurry fuels atomization in the furnaces of power boilers in order to predict the aerodynamic characteristics of the designed and existing units.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here