z-logo
open-access-imgOpen Access
The pre-equilibrium and equilibrium double differential cross sections for the nucleons and light nuclei induce nuclear reactions on 27Al nuclei
Author(s) -
Maha Taha Idrees
Publication year - 2019
Publication title -
iraqi journal of physics
Language(s) - English
Resource type - Journals
eISSN - 2664-5548
pISSN - 2070-4003
DOI - 10.30723/ijp.v15i32.158
Subject(s) - physics , nucleon , pauli exclusion principle , atomic physics , nuclear reaction , work (physics) , projectile , differential (mechanical device) , nuclear physics , mass number , isospin , angular momentum , neutron , quantum mechanics , thermodynamics
The pre - equilibrium and equilibrium double differential crosssections are calculated at different energies using Kalbach Systematicapproach in terms of Exciton model with Feshbach, Kerman andKoonin (FKK) statistical theory. The angular distribution of nucleonsand light nuclei on 27Al target nuclei, at emission energy in the centerof mass system, are considered, using the Multistep Compound(MSC) and Multistep Direct (MSD) reactions. The two-componentexciton model with different corrections have been implemented incalculating the particle-hole state density towards calculating thetransition rates of the possible reactions and follow up the calculationthe differential cross-sections, that include MSC and MSD models.The finite well depth, isospin, shell effects, Pauli effect, chargeeffect, pairing, surface, angular and linear momentum distributionscorrections are considered in this work. The nucleons (n and p) andlight nuclei (2D and 3T) have been employed as projectiles at thetarget 27Al nuclei and at different incident energies (4MeV, 14 MeVand 14.8MeV). The results have been compared with the availableexperimental and theoretical published work. The comparisons showan acceptable agreement with the TALAYS code (Tendel 2014) forthe reactions: 27Al (n, n) 27Al, 27Al (p, n) 63Zn, 27Al (p, D) 62Cu, 27Al(p, p) 63Cu and 27Al (p, 4He)60Ni and at different emission energiesand angles.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here