z-logo
open-access-imgOpen Access
Investigation of density and form factor of some F isotopes using Hartree-Fock and shell model calculations
Author(s) -
Wasan Z. Majeed
Publication year - 2019
Publication title -
iraqi journal of physics
Language(s) - English
Resource type - Journals
eISSN - 2664-5548
pISSN - 2070-4003
DOI - 10.30723/ijp.v14i30.211
Subject(s) - shell (structure) , isotope , shell model , neutron , atomic physics , proton , charge density , effective nuclear charge , molecular physics , physics , materials science , electron , nuclear physics , quantum mechanics , composite material
Structure of unstable 21,23,25,26F nuclei have been investigatedusing Hartree – Fock (HF) and shell model calculations. The groundstate proton, neutron and matter density distributions, root meansquare (rms) radii and neutron skin thickness of these isotopes arestudied. Shell model calculations are performed using SDBAinteraction. In HF method the selected effective nuclear interactions,namely the Skyrme parameterizations SLy4, Skeσ, SkBsk9 andSkxs25 are used. Also, the elastic electron scattering form factors ofthese isotopes are studied. The calculated form factors in HFcalculations show many diffraction minima in contrary to shellmodel, which predicts less diffraction minima. The long tailbehaviour in nuclear density is noticeable seen in HF more than shellmodel calculations. The deviation occurs between shell model andHF results are attributed to the sensitivity of charge form factors tothe change of the tail part of the charge density. Calculations donefor the rms radii in shell model showed excellent agreement withexperimental values, while HF results showed an overestimation inthe calculated rms radii for 21,23F and good agreement for 25,26F. Ingeneral, it is found that the shell model and HF results have the samebehaviour when the mass number (A) increase.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here