
Investigation of the nuclear structure of 84-108Mo isotopes using Skyrme-Hartree-Fock method
Author(s) -
Ali A. Alzubadi
Publication year - 2019
Publication title -
iraqi journal of physics
Language(s) - English
Resource type - Journals
eISSN - 2664-5548
pISSN - 2070-4003
DOI - 10.30723/ijp.v13i26.278
Subject(s) - physics , hartree–fock method , neutron , isotope , nucleon , binding energy , ground state , radius , nuclear physics , proton , nuclear structure , charge radius , mean field theory , atomic physics , quantum mechanics , computer security , computer science
Over the last few decades the mean field approach using selfconsistentHaretree-Fock (HF) calculations with Skyrme effectiveinteractions have been found very satisfactory in reproducingnuclear properties for both stable and unstable nuclei. They arebased on effective energy-density functional, often formulated interms of effective density-dependent nucleon–nucleon interactions.In the present research, the SkM, SkM*, SI, SIII, SIV, T3, SLy4,Skxs15, Skxs20 and Skxs25 Skyrme parameterizations have beenused within HF method to investigate some static and dynamicnuclear ground state proprieties of 84-108Mo isotopes. In particular,the binding energy, proton, neutron, mass and charge densities andcorresponding root mean square radius, neutron skin thickness andcharge form factor are calculated by using this method with theSkyrme parameterizations mentioned above. The calculated resultsare compared with the available experimental data. Calculationsshow that the Skyrme–Hartree–Fock (SHF) theory with aboveforce parameters provides a good description on Mo isotopes.