z-logo
open-access-imgOpen Access
MODEL GEOGRAPHICALLY WEIGHTED POISSON REGRESSION DENGAN PEMBOBOT FUNGSI KERNEL GAUSS
Author(s) -
Salmon N. Aulele
Publication year - 2011
Publication title -
barekeng
Language(s) - Italian
Resource type - Journals
eISSN - 2615-3017
pISSN - 1978-7227
DOI - 10.30598/barekengvol5iss2pp25-30
Subject(s) - poisson regression , poisson distribution , mathematics , physics , statistics , medicine , population , environmental health
Kematian bayi adalah suatu kematian yang dialami anak sebelum mencapai usia satu tahun. Angka kematian bayi (AKB) adalah besarnya kemungkinan bayi meninggal sebelum mencapai usia satu tahun, dinyatakan dalam perseribu kelahiran hidup. Analisis regresi merupakan analisis statistik yang bertujuan untuk memodelkan hubungan antara variabel respon dengan variabel prediktor. Apabila variabel respon berdistribusi Poisson, maka model regresi yang digunakan adalah regresi Poisson. Geographically Weighted Poisson Regression (GWPR) adalah bentuk lokal dari regresi Poisson dimana lokasi diperhatikan yang berasumsi bahwa data berdistribusi Poisson. Dalam penelitian ini akan mengetahui faktor-faktor apa saja yang mempengaruhi jumlah kematian bayi di Provinsi Jawa Timur dengan menggunakan model GWPR dengan menggunakan pembobot fungsi kernel gauss. Hasil penelitian menunjukan bahwa secara keseluruhan faktor-faktor yang mempengaruhi jumlah kematian bayi di Jawa Timur berdasarkan model GWPR dengan pembobot fungsi kernel gauss adalah persentase persalinan yang dilakukan dengan bantuan tenaga non medis (X1), rata-rata usia perkawinan pertama wanita (X2), rata-rata pemberian ASI ekslusif (X4) dan jumlah sarana kesehatan (X7). Berdasarkan variabel yang signifikan maka kabupaten/kota di Jawa Timur dapat dikelompokan menjadi 2 kelompok. Dengan membandingkan nilai AIC antara model regresi Poisson dan model GWPR diketahui bahwa model GWPR dengan pembobot fungsi kernel Gauss merupakan model yang lebih baik digunakan untuk menganalisis jumlah kemtian bayi di Propinsi Jawa Timur tahun 2007.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here