z-logo
open-access-imgOpen Access
SIFAT-SIFAT INTEGRAL RIEMANN-STIELTJES
Author(s) -
Francis Yunito Rumlawang,
Harimanus Batkunde
Publication year - 2007
Publication title -
barekeng jurnal ilmu matematika dan terapan
Language(s) - English
Resource type - Journals
eISSN - 2615-3017
pISSN - 1978-7227
DOI - 10.30598/barekengvol1iss2pp25-30
Subject(s) - riemann–stieltjes integral , riemann integral , riemann hypothesis , mathematics , mathematical analysis , monotone polygon , pure mathematics , integral equation , geometry , singular integral
If is limited and []ℜ→baf,:[]ℜ→ba,:α Monotone increase in [, is Riemann-Stieltjes integral able to α on ] ba,[]ba, simply written by[]αRSf∈ if . With JI=()()xdxfIbaα∫= is called Riemann Stieltjes lower integral f to α and ()()xdxfJbaα∫= is called Riemann Stieltjes upper integral f to α. Then is called Riemann Stieltjes upper integral f to ()()∫==baxdxfJIαα on [. if f ang g is Riemann Stieltjes integralable, and, k oe √ then f + g, kf, and fg is also Riemann Stieltjes integralable. But if f and ] ba,α have united discontinue point then f is not Riemann Stieltjes integralable on α

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom