
The Effect of Ossicular Chain Disorders on Sound Transmission and Tinnitus Perception using Electrical Model
Author(s) -
Manal Riad,
Omar Bouattane
Publication year - 2021
Publication title -
international journal of emerging trends in engineering research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 14
ISSN - 2347-3983
DOI - 10.30534/ijeter/2021/27982021
Subject(s) - middle ear , stapes , tinnitus , sound transmission class , audiology , sound perception , cochlea , hearing loss , inner ear , ossicles , acoustics , incus , medicine , psychology , physics , anatomy , perception , neuroscience
Human middle ear ensures sound transfer due its ossicular chain, any disorder or abnormalities in this structure leads to a conductive hearing loss (CHL). Tinnitus is a health problem, associated with hearing loss, it remains a devastating symptom. In this work, we present an electrical model of the human middle ear including middle ear cavities (ZMEC), tympanic membrane with ossicular chain (ZTOC), and stapes complex with cochlea load (ZSC). This model is modified to represent more closely the related pathologies affecting the middle ear. We will focus our analysis on ossicular chain disorder by studying the effect of increasing ossicular chain (OC) stiffness and mass in both normal middle ear structures and disconnected stapes superstructure. The change in middle ear structures and impedance allows us to simulate ossicular chain disorder effects and analyze their impact on sound transmission. This analysis allowed us to know if this disorder can eventually cause tinnitus. The results showed that the effect of ossicular chain anomalies can be studied based on frequency response of middle ear transfer function by applying only the principle of mass and stiffness, and demonstrate compared to clinical results the efficiency and simplicity of using the electrical model.