
A Novel Kernelized Fuzzy Clustering Algorithm for Data Classification
Publication year - 2021
Publication title -
international journal of emerging trends in engineering research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 14
ISSN - 2347-3983
DOI - 10.30534/ijeter/2021/07982021
Subject(s) - cluster analysis , fuzzy clustering , kernel (algebra) , cure data clustering algorithm , correlation clustering , data mining , kernel method , artificial intelligence , mathematics , pattern recognition (psychology) , computer science , canopy clustering algorithm , separable space , data stream clustering , support vector machine , mathematical analysis , combinatorics
Data are expanding day by day, clustering plays a main role in handling the data and to discover knowledge from it. Most of the clustering approaches deal with the linear separable problems. To deal with the nonlinear separable problems, we introduce the concept of kernel function in fuzzy clustering. In Kernelized fuzzy clustering approach the kernel function defines the non- linear transformation that projects the data from the original space where the data are can be more separable. The proposed approach uses kernel methods to project data from the original space to a high dimensional feature space where data can be separable linearly. We performed the test on the real world datasets which shows that our proposed kernel based clustering method gives better accuracy as compared to the fuzzy clustering method.