
A Review: Machine Learning Approach and Deep Learning Approach for Fake News Detection
Publication year - 2021
Publication title -
international journal of emerging trends in engineering research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.218
H-Index - 14
ISSN - 2347-3983
DOI - 10.30534/ijeter/2021/01982021
Subject(s) - social media , machine learning , computer science , artificial intelligence , fake news , decision tree , naive bayes classifier , adaboost , variety (cybernetics) , deep learning , population , support vector machine , data science , internet privacy , world wide web , sociology , demography
creasing number of social media platforms, emerging new technologies, and population growth which results in the rate of using social media has increased rapidly. With an increasing number of users on online platforms comes to a variety of problems like fake news. The extensive growth of fake news on social media can have a serious impact on the real world and became a cause of concern for net users and governments all over the world. Distinguishing between real news and fake news becoming more challenging. The amount of fake news has become a disguise. In this paper, we have done a survey on detection techniques for fake news using Algorithms and Deep learning techniques. We have compared machine learning algorithms like Naïve-Bayes, Decision tree, SVM, Adaboost, etc. Comparing the accuracy