
A Comparative Study of Models for Monocular Depth Estimation in 2D Images
Publication year - 2021
Publication title -
international journal of advanced trends in computer science and engineering
Language(s) - English
Resource type - Journals
ISSN - 2278-3091
DOI - 10.30534/ijatcse/2021/021012021
Subject(s) - monocular , artificial intelligence , computer science , field (mathematics) , point (geometry) , artificial neural network , computer vision , deep learning , transfer of learning , estimation , stereopsis , machine learning , pattern recognition (psychology) , mathematics , geometry , management , pure mathematics , economics
Monocular depth estimation has been a challenging topic in the field on computer vision. There have been multiple approaches based on stereo and geometrical concepts to try and estimate depth of objects in a two-dimensional field such as that of a plain photograph. While stereo and lidar based approaches have their own merits, there is one issue that seems recurrent in them, the vanishing point problem. An improvised approach to solve this issue involves using deep neural networks to train a model to estimate depth. Even this solution has multiple approaches to it. The general supervised approach, an unsupervised approach (using autoencoders) and a semisupervised approach (using the concept of transfer learning). This paper presents a comparative account of the three different learning models and their performance evaluation