
Iterative tomography of pipes during operation
Author(s) -
С. А. Золотарев,
V. L. Vengrinovich,
С. И. Смагин
Publication year - 2021
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-tèhnìčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-244X
pISSN - 1561-8358
DOI - 10.29235/1561-8358-2021-66-4-505-512
Subject(s) - projection (relational algebra) , tomography , materials science , optics , computer science , physics , algorithm
The pipe wall thickness was estimated based on three-dimensional images of the pipe recovered from several X-ray projections, which were made in a limited angle of view. Since the effects of scattered radiation and beam hardening are up to 50 % of the main radiation, ignoring them leads to blur of the image and inaccuracy in determining dimensions. To restore pipe images from projections, a volume and/or shell representation of the pipe is used, as well as iterative Bayesian methods. Using these methods, the error in estimating the pipe wall thickness from the projection data can be equal to or less than 300 μm. It has been shown that standard X-ray projections on the film or imaging plates used to obtain data can be used to restore pipe wall thickness profiles in factory conditions.