z-logo
open-access-imgOpen Access
Analysis of kinematics of tool and work piece contact during lens processing
Author(s) -
А. С. Козерук,
Y. L. Malpica,
A. A. Sukhotski,
V. I. Yurynok,
М. И. Филонова,
В. И. Шамкалович
Publication year - 2020
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-tèhnìčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-244X
pISSN - 1561-8358
DOI - 10.29235/1561-8358-2019-64-4-429-437
Subject(s) - lens (geology) , grinding , symmetry (geometry) , enhanced data rates for gsm evolution , contact area , contact lens , abrasive , work (physics) , mechanics , kinematics , point (geometry) , clamping , optics , geometry , materials science , mechanical engineering , physics , engineering , mathematics , classical mechanics , telecommunications
Using the first axiom of statics for equilibrium of a two forces system applied to points of a solid body, it was verified, that the pressure in the zone of contact of a tool with a lens during its abrasive processing by the grinding-free method is unevenly distributed. With this in mind, the nature of the distribution of the pressure profile has been presented graphically, showing the equilibrium condition when the tool is rotated around the center of the spherical surface of the lens relative to its axis of symmetry and the clamping force of the unions that are grinded has been recorded. On that base an expression is proposed for determining the current pressure at an arbitrarily chosen point on the surface of the lens. An expression for determining the continuously changing contact area of the instrument and the lens during its processing by grinding-free method is obtained. The calculation of current pressure at different points of the diametrical cross-section of the contact zone of the lapping surfaces of the tool, performing oscillatory motion, and the lens is performed. As a result, the uneven distribution of pressure in the area under study was revealed, with the minimum value of this indicator taking place in the zone of contact of the tool edge with the lens, and the maximum in the zone of contact of the lens edge with the tool. The observed non-uniformity increases with an increase in the angle of deviation of the tool from the axis of symmetry of the lens. Theoretical and experimental studies of the influence of the tool diameter on the polishing process of the lens under conditions of free grinding, which prevents the occurrence of local error in the marginal zone of the latter due to the pressure drop between the grinding surfaces during the instrument movement, are carried out. At the same time it was found that in order to avoid a “blockage of the edge”, it is necessary to use a tool with diameter of at least 0.8 of the diameter of the lens (in case it is the lower link). The obtained results allow assigning the optimal diameter of the tool depending on the size of the processed lens without preliminary laborious experiments and can be used in optical and optoelectronic instrument making.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here