
Producing wear-resistant materials by SHS-casting with the application of centrifugal forces
Author(s) -
В. В. Клубович,
М. М. Кулак,
V. G. Samolyotov,
Б. Б. Хина
Publication year - 2019
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-tèhnìčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-244X
pISSN - 1561-8358
DOI - 10.29235/1561-8358-2019-64-3-275-285
Subject(s) - materials science , centrifugal casting (silversmithing) , casting , microstructure , charpy impact test , metallurgy , composite material , carbide , service life , lubricant , mold
The paper is devoted to the problem of producing hard, wear-resistant materials by SHS-casting using centrifugal forces. We have developed a device for centrifugal SHS casting and initial compositions of the reactive iron-base charge. A technology for producing coatings, materials and final products with a non-uniform distribution of strengthening particles over the specimen volume has been developed and tested in industrial conditions. The microstructure and phase composition of the synthesized material with a non-uniform distribution of reinforcing particles is studied. The synthesized material implements the Charpy principle: dispersed hard carbide particles are distributed in a relatively soft matrix, which ensures high wear resistance. By means of SHS casting, billets were obtained for producing a measurement instrument, namely a plug-type gauge, which successfully passed industrial tests at OJSC “VIZAS”. The tests shown that the hardness of all synthesized samples was in the range from 63 to 68 HRC and the number of measurements per 1 micron of wear on a diameter of15 mm was 2500 to 2700. Hence, the developed method made it possible to significantly increase the service life of the measuring tool: by a factor of 1.5 to 2.