
Numerical modeling of a clean shift for perfectly elastic-plastic material (Murnaghan’s material)
Author(s) -
О. Л. Швед
Publication year - 2019
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-tèhnìčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-244X
pISSN - 1561-8358
DOI - 10.29235/1561-8358-2019-64-2-182-189
Subject(s) - plasticity , materials science , anisotropy , constitutive equation , mechanics , deformation (meteorology) , hydrostatic pressure , yield surface , yield (engineering) , hydrostatic equilibrium , composite material , thermodynamics , finite element method , physics , optics , quantum mechanics
The constitutive equations are formulated for the case when the process point is located at the singular point of the deviator section of the yield surface. The main parameter of Murnaghan’s elastic-plastic material is selected – the relative part of the dissipated specific power of deformation. This value depends on the type of stress-strain state, strain rate and material loading history. This dependence is due to the rational choice of the growth parameter of the elastic deformation anisotropy, which ensures its minimum value. Complex programs in FORTRAN language have been developed and the pure shift process has been numerically simulated. The results of calculations of the process carried out before the moment of material destruction according to the proposed non-standard fracture criterion are presented. The phenomenon of increasing the plasticity of the material for pure shear with applied high hydrostatic pressure is described. Bridgman’s experimental data on the presence of a threshold pressure value for hard-to-deform metals is confirmed.