z-logo
open-access-imgOpen Access
MAGNETIC NANOMATERIALS AND NANOSTRUCTURES. TRENDS OF DEVELOPMENT
Author(s) -
В. М. Федосюк
Publication year - 2018
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-tèhnìčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-244X
pISSN - 1561-8358
DOI - 10.29235/1561-8358-2018-63-2-135-149
Subject(s) - materials science , nanomaterials , nanocomposite , nanowire , nanostructure , nanotechnology , annealing (glass) , ferromagnetism , magnetoresistance , condensed matter physics , composite material , magnetic field , physics , quantum mechanics
There are analyzed creation and development of magnetic nanomaterials and nanostructures, films with a columnar type of crystal structure, multilayer film structures, nanocomposites, granular alloys and nanowires. The methodics of obtaining, structure, magnetic and magnetoresistive properties of three types of nanowires – multilayered and granular ones and the ones of spin-valve type are discussed. It is shown that multilayer film coatings with very thin (< 1 nm) alternating magnetic and nonmagnetic layers behave like films of granular alloys. It is emphasized that the films of granular Cu–Co alloys were first obtained at the Scientific and Practical Materials Research Center of the National Academy of Sciences of Belarus by the method of electrolytic deposition without subsequent annealing, as is the case with other methods for their preparation. As prepared Cu–Co films are superparamagneties. That is, they demonstrate ferromagnetic below blocking temperature, which is dependent on the size of cobalt clusters in diamagnetic matrix of copper. The granulated nanowires, firstly obtained by us, exhibit similar behavior. Special attention is paid to the analysis of obtaining and properties of multilayered films of the spin-valve type. The trends in the development of materials science are predicted, which will allow creating new materials with a high level of quality and specified properties, what will allow expanding the area of export of such materials and products from them in the future. 

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here