
Correcting the infrared images of soft biological tissues
Author(s) -
А. П. Иванов
Publication year - 2019
Publication title -
vescì nacyânalʹnaj akadèmìì navuk belarusì. seryâ fìzìka-matèmatyčnyh navuk
Language(s) - English
Resource type - Journals
eISSN - 2524-2415
pISSN - 1561-2430
DOI - 10.29235/1561-2430-2019-55-1-110-117
Subject(s) - brightness , point source , infrared , inverse , optics , thermal , point (geometry) , monochrome , materials science , brightness temperature , biological system , mathematics , physics , geometry , thermodynamics , biology
Non-invasive (remote) thermographic methods based on IR images are being actively implemented. Using the calculation results of the temperature increment that occurs when a pathological source exists in the person’s skin, a number of ways of solving “inverse problems” are proposed. These include the determination of the depth of the thermal source by measuring the mono or polychrome increment of the normalized brightness of the tissue surface at one point; the source depth and heat transfer parameter by measuring the poly or monochrome one of the normalized brightness (or temperature) at two points; the thermal power of the source by measuring the increment of absolute brightness or temperature at one point; the depth of the thermal source and its size in the near-surface layer by measuring the increment of the normalized brightness at two points. In order to solve these problems, the thermophysical and optical properties of the soft tissues of the biological organism are indicated. Analytical solutions are given for describing the temperature and the glow that arises under its influence from the sources of cylindrical and spherical shape.