z-logo
open-access-imgOpen Access
Klasifikasi Citra Burung Lovebird Menggunakan Decision Tree dengan Empat Jenis Evaluasi
Author(s) -
Aviv Yuniar Rahman
Publication year - 2021
Publication title -
jurnal resti (rekayasa sistem dan teknologi informasi)
Language(s) - English
Resource type - Journals
ISSN - 2580-0760
DOI - 10.29207/resti.v5i4.3210
Subject(s) - c4.5 algorithm , decision tree , artificial intelligence , computer science , pattern recognition (psychology) , tree (set theory) , mathematics , naive bayes classifier , support vector machine , mathematical analysis
Lovebird is a pet that many people in Indonesia have known. The diversity of species, coat color, and body shape gives it its charm. As well in this lovebird bird has its uniqueness of various rare colors. However, many ordinary people have difficulty distinguishing the types of lovebirds. This research is needed to improve previous study performance in classifying lovebird images using the Decision Tree J48 algorithm with 4 types of evaluation. In this case, also to reduce the stage of feature extraction to speed up the computational process. Based on available comparisons, the results obtained at the same split ratio with a comparison of 60:40 in Decision Tree J48 have the precision of 1,000, recall of 1,000, f-measure of 1,000, and accuracy value of 100%. Then the Artificial Neural Network with a split ratio of 60:40 has a precision of 0.854, recall of 0.843, f-measurement of 0.841, and an accuracy value of 84.25%. These results prove that by testing the first-level extraction on color features, Decision Tree J48 is superior in classifying images of lovebird species, and Decision Tree J48 can improve performance and produce the best accuracy.  

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here