
ABSENCE OF H2O2 BREAKDOWN IN HUMAN HAIR MEDULLA IMPLICATIONS IN FOLLICULAR MELANOGENESIS
Author(s) -
Andrea Ábrahám
Publication year - 2018
Publication title -
international journal of research - granthaalayah
Language(s) - English
Resource type - Journals
eISSN - 2394-3629
pISSN - 2350-0530
DOI - 10.29121/granthaalayah.v6.i9.2018.1209
Subject(s) - medulla , hair follicle , melanin , human skin , chemistry , hydrogen peroxide , microbiology and biotechnology , cortex (anatomy) , follicular phase , biophysics , biology , endocrinology , biochemistry , neuroscience , genetics
The purpose of this manuscript is to introduce the absence of H2O2 decomposition in the human hair follicle medulla. This absence is attributed to an absence of the antioxidants that are essential for the elimination of reactive oxygen species generated during cellular respiration. The present assumption is that the human hair follicle follicular melanogenesis (FM) involves sequentially the melanogenic activity of follicular melanocytes, the transfer of melanin granules into cortical and medulla keratinocytes, and the formation of pigmented hair shafts. The introduction of an airborne gradual hydrogen peroxide (H2O2) molecules transfer into water, has allowed for the slow down of H2O2 decomposition speed when contacting human tissue. The usual explosive reaction commonly seen has been avoided; and previously unseen details of the H2O2 breakdown anatomical locations within the human hair follicle reaction can now be detected. Dynamic video-recordings show for the first time H2O2 decomposition occurring in the cortical and cortex areas. Published evidence links cellular H2O2 breakdown and metabolism. A new paradigm is herein introduced where the human hair medulla is excluded from H2O2 breakdown, thus inferring the absence of metabolic activity from FM.