
APPLICATION OF A COMPLEX APPROACH FOR THE DETERMINATION OF THE RESIDUAL LIFE OF AN INDUSTRIAL BUILDING WITH DEFORMED SLING TRUSSES
Author(s) -
Марина Шутова,
Sergey Evtushenko
Publication year - 2019
Publication title -
stroitelʹstvo i arhitektura
Language(s) - English
Resource type - Journals
eISSN - 2500-1477
pISSN - 2308-0191
DOI - 10.29039/2308-0191-2019-7-3-30-35
Subject(s) - truss , structural engineering , probabilistic logic , residual , finite element method , truss bridge , residual stress , computer science , engineering , materials science , composite material , algorithm , artificial intelligence
The article is devoted to the problem of objective estimation of residual resource based on a complex approach using probabilistic methods and graph theory. A single-storey building of the industrial workshop in Taganrog was chosen as an object for evaluation. The survey revealed typical defects and damages for industrial buildings - soaking, weathering of the solution, corrosion and absence of paint coating, as well as atypical defects - cuts of mechanical nature in various elements of farms. These damages are stress concentrators, so a three-dimensional model of the sling truss with damage simulation was created to calculate the stress-strain state at such sites and a finite element model was calculated in the ANSYS. According to the calculation results, it was found that in the most loaded section with defect (reference brace) there are significant stresses close to the design resistance of the soil, which reduces the total probability of failure-free operation of the truss. The calculation of the probability of failure-free operation for the truss was carried out using probabilistic methods, the relative reliability of the rest of the structures was determined on the basis of external characteristics and inspection of the characteristics of the structures by non-destructive testing methods. It has been established that the residual life in the calculation by the combined method is 17.3 years.